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Abstract 

Recent thermal energy harvesting research has advanced alternative non-Seebeck devices 

and shifted attention towards applications with low temperature differentials near 

ambient.  This research effort takes a simulation-based approach to improve the 

performance of a modified dual-stage MEMS cantilever energy harvester.  The device 

employs a bimetal and a piezoelectric transducer to harvest energy from a 10 °C 

temperature differential.  The proposed application for the device is as a wearable energy 

harvester, capable of generating power from the human body using skin temperature 

(average 33 °C) as the hot side and ambient air (23 °C) as the cold side.  A bimetal 

thickness scaling study is conducted, in which the 1.5 μm bimetal thickness yields the 

maximum electrical power output of 36.82 nW per device.  This translates to a power 

density of 5.68 mW/cm2, which surpasses the performance of many Seebeck and 

non-Seebeck designs from the literature. 
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ENERGY HARVESTING & RECAPTURE FROM HUMAN SUBJECTS: 

DUAL-STAGE MEMS CANTILEVER ENERGY HARVESTER 

 
I.  Introduction 

General Issue 

Energy harvesting is a process of capturing energy from a system’s surrounding 

environment and converting it into usable electrical power.  This field of research 

continues to draw the attention of the academic community as its applications are 

extensive and its topics are multi-disciplinary.  The most common sources of energy that 

are exploited for power generation in energy harvesting systems include temperature 

differentials, kinetic energy, radio frequency energy, solar energy, and biochemically 

produced energy.  The current study focuses on only one unique application of thermal 

energy harvesting from small temperature differentials.  The details of this unique 

application will be described explicitly in the Problem Statement subsection of this 

chapter. 

There are three critical phases in an energy harvesting system: energy collection, 

energy conversion, and energy storage.  The energy collection component of the system 

transforms the energy present in the surrounding environment into some form of 

electrical power.  The output of the energy collection component feeds into the input of 

an energy conversion component.  The energy conversion component of the system 

converts one kind of electrical power into a different—but more useful—kind of 

electrical power.  Often, the energy conversion component provides an appropriate 

amplitude DC voltage at its output that is independent of the electrical power waveform 
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seen at its input.  The output of the energy conversion component feeds into the input of 

an energy storage component.  The energy storage component of the system accumulates 

the power collected by the energy harvesting system for use at a later time.  It may be 

common for energy harvesting systems to generate power intermittently over a period of 

time; thus, the energy storage component can compensate for this aspect of device 

behavior by delivering continuous power.  These three components form an energy 

harvesting system and enable a self-sufficient device.  The current study focuses only on 

thermal energy harvesting, which falls under the category of an energy collection 

component.  This information about the three critical phases provides a context for the 

research conducted in this study and significance for the inputs and outputs of the device. 

Thermal energy harvesting has existed for many years as a reliable power 

generation method [1].  Most past research investigates applications of thermal energy 

harvesting in systems that have large temperature differentials, such as industrial 

processes, vehicle exhaust, and space travel.  This research paradigm shifted its attention 

to applications concerning room temperature ambient sources with much lower 

temperature differentials in the past decade. Additionally, a high percentage of past 

thermal energy harvesting research examines Seebeck devices.  The Seebeck Effect 

describes a material property that produces a voltage potential directly from an applied 

temperature gradient.  The generation of a voltage potential is possible in certain 

materials because charge carriers in a conducting material tend to flow in the direction of 

the temperature gradient.  This property is quantified by the Seebeck coefficient, which 

has units of volts per Kelvin [V/K].  Semiconductor materials have displayed the most 
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desirable qualities by exhibiting high Seebeck coefficients and have consequently been 

the primary focus of research for thermal energy harvesting. 

Electrical conductivity and thermal conductivity are two crucial material 

properties that govern the device performance for thermoelectric systems [1].  Electrical 

conductivity is defined as the degree to which a material can conduct an electrical 

current.  Thermal conductivity is defined as the rate at which heat passes through a 

material.  The electrical conductivity needs to be maximized and thermal conductivity 

needs to be minimized for the best performance in Seebeck devices.  Thermal 

conductivity is divided into two components: the phonon transport component and the 

electrical component of thermal conductivity.  Due to the Wiedemann-Franz Law, the 

electrical component of thermal conductivity is proportional to overall electrical 

conductivity, which poses a problem for finding materials with a high thermoelectric 

figure of merit (a characterization metric based on the Seebeck coefficient).  Bismuth 

Telluride (Bi2Te3) is the most commonly used thermoelectric semiconductor material and 

adequately accommodates conventional microfabrication methods. 

Non-Seebeck thermal energy harvesting is a different branch of research that does 

not involve the use of semiconductor materials for direct voltage generation.  

Non-Seebeck devices employ a myriad of other innovative methods to generate a voltage 

from a thermal gradient.  The current study examines one particular non-Seebeck 

dual-stage thermal microelectromechanical system (MEMS) energy harvesting design 

demonstrated by Puscasu et al. and presents a cantilever-based variation on the design  

[2, 3, 4, 5].  This design, by Puscasu et al., employs a bimetal that works in conjunction 

with a piezoelectric membrane.  The bimetal operates by first converting thermal energy 
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to mechanical energy.  The piezoelectric membrane captures the mechanical energy of 

the bimetal and then converts it to electrical energy.  By this method, the dual-stage 

MEMS energy harvesting design implements a two-stage energy conversion process to 

generate power.  A detailed description of dual-stage thermal energy harvesting device 

operation is included in the Literature Review chapter of this document. 

Problem Statement 

The problem that this thesis research addresses is whether Puscasu’s design for 

thermal energy harvesting can be improved and successfully applied to human subjects.  

The human body can be regarded as a source of heat and therefore a power source for 

thermal energy harvesting devices.  Human-powered energy harvesting devices grant the 

convenience of a mobile platform that can supply electrical power.  Being warm-blooded 

mammals, human body heat is generated from within by normal cell function and escapes 

through the epidermis by way of conduction, convection, radiation, and evaporation.  

Figure 1 shows the methods by which thermal energy escapes from human skin into 

ambient air. 
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Figure 1.  Methods that heat escapes from human skin into ambient air 

A properly designed thermal energy harvesting device captures and repurposes 

this outward heat flow from a portion of the human body and uses it to produce electrical 

power.  The current study will investigate modified dual-stage thermal energy harvester 

operation designed for human use through modeling and simulation.  The end goal is to 

simulate a wearable thermal harvesting device able to produce sufficient electrical power 

to operate a biomedical sensor or charge an electronic device.  Shared interest exists for 

creating a thermal energy harvesting device with these capabilities. 

Research Objectives 

One objective of this research is to surpass the capabilities of similarly 

implemented Seebeck devices under the same conditions.  The other objective of this 

research is to create an improved design that surpasses the performance of the non-

Seebeck designs recorded in the Literature Review.  The measures of success for this 
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research seek to show how Puscasu’s scaling assumptions hold for the modified thermal 

energy harvesting design; the measures of success for this research also seek to 

outperform Seebeck power generation under the conditions of the human environment.  

The conditions of the human environment for this research are defined by a thermal 

gradient that uses 33 °C as the hot side temperature and 23 °C as the cold side 

temperature.  The standard for power density among Seebeck devices varies drastically, 

but for this research, the threshold for Seebeck power densities is to be considered 

~1 mW/cm2.  The main foci for this research include cantilever displacement, oscillation 

frequency, peak voltage, power density, and overall device performance.  Dimensional 

downscaling/device miniaturization is the primary means that this research uses to 

improve device performance.  Appropriate thermal management, a useful temperature 

operating range, and reliability are crucial aspects of favorable device performance.  

Device size, weight, and flexibility are important factors governing the overall mobility 

of the design. 

Investigative Questions 

Can a dual-stage thermal energy harvesting design be improved to surpass the 

performance of current Seebeck and non-Seebeck thermal energy harvesting technology?  

Can a dual-stage thermal energy harvesting design be adapted to operate in temperature 

gradients that humans normally exhibit? 

Methodology 

This research effort uses a simulation-based approach to achieve design 

improvement; the software employed is COMSOL® Multiphysics, an industry-recognized 
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and versatile simulation platform.  After identifying the key parameters to vary that are 

consistent with the literature, a series of simulations are conducted to observe the effects 

of the varying parameters and draw conclusions from the results. 

Assumptions/Limitations 

The assumptions and limitations in this research effort mainly involve the 

computer simulation of the improved design.  As in any simulation effort, the 

applicability to real-world systems or characteristics depends on the validity and accuracy 

of the employed models in the software.  The software used in this research effort is the 

COMSOL® design and simulation platform, which is a commonly used and 

experimentally validated tool for MEMS devices and many other applications.  

Therefore, the COMSOL® simulation tool is assumed to employ accurate numerical 

models from a theoretical basis to match the real-world operation of simulated devices. 

One of the main design improvement techniques that are employed in this 

research is dimensional downscaling or device miniaturization.  COMSOL®, being a 

simulation tool often used for MEMS applications, is expected to maintain accuracy in its 

calculations over a wide range of scalability.  For real-world devices, non-idealities 

become prominent as device dimensions push the limits of scalability.  Although a 

well-reasoned mathematical derivation from the literature has predicted improved device 

performance for a fixed area as the device dimensions are scaled down, there will be a 

point of diminishing returns in the real world where non-idealities will inhibit the 

perpetual increase in device performance [2].  The heat flux across the device is also 

expected to increase as the device dimensions are decreased; for the purposes of this 
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experiment, it will be assumed that the original applied temperature gradient will be 

maintained across the device regardless of scaling. 

Implications 

The motivation for human-based energy harvesting research is to provide mobile 

stand-alone systems that will function as a source of power where a connection to the 

power grid is infeasible.  One main goal is to reduce dependence on batteries.  The 

downscaling of battery-dependent system components causes the size and weight of the 

system to be chiefly determined by the battery itself [1].  Opportunity exists for military 

application as this technology may replace the need for fielded military to carry unwieldy 

batteries to power their equipment.  This body of research also seeks to contribute 

towards the movement for “greener” energy and reduced reliance on conventional power 

production.  The expenditure of heat energy already takes place in both natural human 

function and in the surrounding environment; systems that exploit this un-used thermal 

energy provide a unique mobile charging platform for self-sufficient physiological 

monitoring or electronics charging through the means of a wearable energy harvesting 

device.  This field of research has caught the attention of many who seek to advance 

environmentally-friendly energy production technology and battery-less systems. 

Preview 

The succeeding portions of this document adhere to the following structure order: 

Chapter 2 will present the literature and theory review from past relevant contributions; 

Chapter 3 will present the methodology of the simulation; Chapter 4 will present the data 
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and analyze the findings; Chapter 5 will present the results of this thesis research, draw 

conclusions based upon the data, and suggest future work.  



10 

II. Literature Review 

Chapter Overview 

The rationale for a new investigation on dual-stage thermal MEMS energy 

harvesters stems from the past work conducted by researchers within the thermal energy 

harvesting field.  The subfield of non-Seebeck thermal energy harvesting methods is 

relatively new in concept and lacks a comprehensive collection of previously conducted 

research.  This chapter starts with a broad description of energy harvesting systems and 

gradually narrows the scope of the literature discussed to non-Seebeck thermal energy 

harvesting devices.  There is one primary team of researchers that is studying dual-stage 

thermal MEMS energy converters, and much of the mentioned relevant work toward the 

end of this chapter is comprised of its findings.  This chapter exhibits portions of previous 

relevant research and explains the resultant implications that drive the direction of this 

thesis effort.  Finally, the chapter closes with a summary of the implications extracted 

from the literature. 

Relevant Research 

The relevant research section begins by discussing a broad range of energy 

collection and ends by focusing on the relevant research that is most comparable to the 

current study.  A topographical analysis of energy harvesting systems gains relevance if a 

discussion of terminology is first articulated to justify the significance of topics discussed 

later in this document. 

A discussion of passive and self-powered autonomous sensor systems follows.  

An autonomous sensor is defined as a device that autonomously performs measurement 
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functions within its environment [6].  Passive autonomous sensors imply passive circuit 

elements and passive operation; self-powered autonomous sensors imply the use of an 

energy harvesting module.  Autonomous sensors, though not the main focus of this 

document, serve as a context medium for energy harvesting because they are common 

miniaturized systems that record data.  Figure 2 shows a block diagram of a passive 

sensor system. 

 

Figure 2.  System block diagram view of a passive autonomous sensor [6] 

The passive sensor system consists of a sensing element and a readout unit that 

are brought into proximity in order to form a communication channel.  The 

communication channel bridges the barrier between the remote and accessible regions 

and the consequent data flow is mono-directional.  The communication channel is formed 

only when the readout unit interrogates the sensing element because the sensing element 

does not provide power for itself nor does it have any type of power supply. 

Self-powered autonomous systems observe a much different mode of operation 

than passive autonomous sensors in the remote area.  Figure 3 shows a block diagram of 

a self-powered sensor system. 
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Figure 3.  System block diagram view of a self-powered autonomous sensor [6] 

The self-powered sensor system is an upgrade in complexity compared with the 

passive sensor system as indicated by the increased number of functions in the diagram.  

Similarities of the two autonomous sensors include the distinction between a remote and 

an accessible region of the system which is bridged by the communication channel to 

interface the readout unit.  Data flow capabilities are bi-directional due to the wireless 

transponder.  Power may also be supplied to self-powered sensor device by the readout 

unit, but only for the purposes of data transfer.  The many blocks composing the 

self-powered sensor device in the remote region of the diagram form an independently 

functioning entity.  In the absence of the readout unit, the device in the remote area is 

able to take measurements through the sensing element and store the data, all while 

providing its own power.  The power is provided by the three energy harvesting 

components, which are the power harvesting block, the voltage DC-DC converter block, 
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and the power management block.  These three blocks correspond to more generalized 

terms that describe the three phases of an energy harvesting system: energy collection, 

energy conversion, and energy storage, respectively.  Energy collection components 

transform the energy present in the surrounding environment into electrical power.  There 

are different sources of power that energy collectors can draw from including: thermal, 

vibrational, radiofrequency, solar, and chemical energy.  These sources can either be 

drawn directly from the human body or harvested from the surrounding ambient 

environment through the means of a wearable device.  The input of an energy conversion 

component is equivalent to the output of the electrical power from the energy collection 

component.  Energy conversion components provide a usable DC output independent of 

the form of the electrical power seen at its input.  The input of an energy storage 

component is equivalent to the output of the DC power from the energy conversion 

component.  Energy storage components hold the power generated by the energy 

harvesting system for use at a later time.  It may be common for energy harvesting 

systems to only intermittently generate power over a period of time; thus the energy 

storage component can compensate for this aspect of device behavior by delivering 

continuous power.  These three components form an energy harvesting system and enable 

a self-powered autonomous sensor to be a self-sufficient entity.  Discussions of common 

autonomous sensors types and the three phases of energy harvesting have been provided 

to lay a foundation for a more focused discussion of piezoelectric and thermal energy 

harvesting systems, which function as energy collection components. 

The energy collection aspect of energy harvesting has seen the most emphasis in 

research efforts from the birth of this field of study.  Many techniques have been 
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developed for exploiting different forms of energy in either ambient or controlled 

environments.  It should be noted that device miniaturization is an important recurring 

theme for this particular application of energy harvesting.  Although component 

miniaturization is relevant for all three phases of energy harvesting, unique principles that 

apply primarily to energy collection devices govern the scaling laws for centimeter-sized 

devices down to micron-sized devices.  The significance of natural forces changes at the 

small-scale when compared to the macro-scale.  Natural forces refer to surface tension, 

electrostatic, electromagnetic, and gravitational forces.  When devices are scaled down 

and surface area to volume ratios increase, surface tension forces dominate inertial forces 

[7].  These are important considerations for miniaturized energy collection devices that 

make use of these forces to generate electrical power. 

Kinetic Energy Harvesting 

Vibrational or kinetic energy harvesting contains many subcategories composed 

of different harvesting methods.  It is less suited to harvesting applications relating to 

humans due to its high resonant frequencies, but vibrational harvesting systems can be 

optimized for lower frequencies at the expense of other trade-offs.  Figure 4 shows a 

generic vibrational system that communicates the essential elements of vibrational energy 

harvesting operation. 
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Figure 4.  Vibrational energy harvesting system diagram [1] 

Where k is the spring constant, m is the weight of the proof mass, ζe is the 

electrical damping coefficient, ζm is the mechanical damping coefficient, z(t) accounts for 

the movement of the proof mass, and y(t) accounts for the movement of the entire 

structure.  Vibrational harvesters usually need to have a narrow bandwidth in order to 

generate appreciable power; therefore, vibrational harvesters must be designed to operate 

at their resonant frequency (fundamental frequency). 

Electromagnetic vibrational harvesting is a common form of energy collection, 

but most electromagnetic systems have resonant frequencies much higher than would be 

suitable for human applications.  Elliott and Zilletti present an analytical approach to 

harvesting energy from electromagnetic transducers purposed for shunt damping 

applications [8].  The goal of the analysis is to determine the relationship between the 

efficiency of an electromagnetic transducer and the coupling coefficient.  It is 

demonstrated that the coupling coefficients scale approximately with the size of the 

electromagnetic transducer.  By contrast, piezoelectric coupling coefficients are 

independent of the size of the piezoelectric transducer.  Elliott’s analysis shows that, 

based on the coupling coefficient, devices under 10 kg in weight should employ 
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piezoelectric transducers.  Devices over 10 kg in weight should employ electromagnetic 

transducers.  Therefore, the acute drawback in human applications is that miniaturized 

electromagnetic devices suffer great efficiency losses in comparison to equivalent 

piezoelectric systems.  Efficiency losses in addition to increases in the resonant frequency 

as the size of the device is scaled down make electromagnetic vibrational energy 

harvesting a poor candidate for human applications. 

Very low frequency energy harvesting operation is possible in a piezoelectric ring 

system.  Xie et al. designs and simulates a macro-scale ring piezoelectric harvester with a 

diameter of about one meter [9].  Xie’s research develops the harvester along with a 

mathematical model to predict the output of the device.  The device is able to produce 

12.7 W at a frequency of 1 Hz and is able to produce 381.7 W at a frequency of 30 Hz.  

Though this system is very large compared to the other devices surveyed in this 

document, it could be miniaturized without experiencing heavy efficiency losses because 

it is piezoelectric-based.  Operation frequencies would increase with decreasing size, but 

it remains to be seen whether a small-scale piezoelectric ring harvester would be an 

effective device. 

Capacitive or electrostatic harvesting is the most favorable vibrational energy 

harvesting method for human applications due to its ability to be fabricated with MEMS 

technology; but there are still inherent disadvantages to capacitive systems such as the 

need for a prior DC bias.  Lin et al. creates and characterizes a dual cavity MEMS 

capacitor vibrational system through simulation and fabrication [10].  Lin executes finite 

element modeling (FEM) to characterize the motion and output of the MEMS capacitor.  

Simulations determine an optimally resonant frequency of 487 Hz; experimental data 
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determines the device resonant frequency to be 500 Hz.  The maximum power generation 

of the fabricated capacitor array is able to reach 2.5 μW under conditions of high voltage 

bias (15 V) and extreme excitation accelerations (>5 Gs).  Lin’s design needs to operate 

at a lower frequency, with lower voltage bias, and much lower excitation accelerations if 

any application to human-based energy harvesting is to be realized.  Lin also identifies 

squeeze film air damping as a future research effort that needs extensive characterization 

and numerical analysis.  Squeeze film air damping is a surface tension effect that 

becomes substantial as the size of micro-machined structures is decreased [11].  The 

movement of mechanical parts encounters a counter-reactive force by compressing the 

surrounding air between parallel surfaces and thus affecting the frequency response of the 

system.  These compression damping forces overshadow drag damping forces if the 

created air film is less than a third of the transverse dimension of the surface. 

Capacitive energy harvesting, similar to thermal energy harvesting, is realizable in 

more than one orientation.  The three orientations for capacitive harvesting have unique 

working qualities.  Figure 5 shows the different orientations for capacitive energy 

harvesting that have been investigated previously. 
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Figure 5.  (a) In-plane overlap-varying capacitive harvester, (b) In-plane gap-closing 

capacitive harvester, (c) Out-of-plane gap-closing capacitive harvester [1] 

The two-way arrows in each subpart of Figure 5 indicate the shuttle’s direction of 

motion.  With a prior applied voltage bias, the movement of the shuttle changes the 

capacitance and generates an output signal.  One devised method of applying a permanent 

voltage bias is implementing an electret material.  Electret materials eliminate the need 

for an external voltage source by maintaining a built-in electric field.  Arakawa et al. 

proposed an in-plane overlap-varying capacitive harvester that has a fluorocarbon-based 

electret material with a high dielectric strength spun onto the electrodes [12].  The 
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fabrication of the capacitive device and the deposition of the electret material use 

common fabrication techniques.  The device size is 20 mm ⨯ 20 mm ⨯ 2 mm and has a 

resonant frequency of 10 Hz.  It produces 7.5 μW/cm3 at an acceleration of 3.9 m/s2.  The 

low resonant frequency and low excitation acceleration of Arakawa’s device make it a 

viable candidate for application to humans.  If this work could be reproduced in an 

in-plane gap-closing orientation, then even lower excitation accelerations would produce 

the same output power because similar capacitances are attainable with reduced 

movement. 

As previously mentioned, resonant frequency increases as the size of the device 

decreases.  Non-resonant vibrational energy harvesting systems are one way that the 

negative effects of vibration energy harvesting device miniaturization can be avoided.  

Shenck and Paradiso created an impact-coupled system by implanting pre-stressed metal 

strips with PZT in the heels of shoes so that the act of walking would generate power 

[13].  At a frequency of 0.9 Hz, an average power of 8.4 mW is produced.  Within the 

field of vibrational energy harvesting, impact-coupled, non-resonant devices may be the 

best suited to human application.  Typical human movements do not exceed more than a 

few Hertz, yet the overall kinetic forces are much higher than other kinds of ambient 

vibrations.  Caliò et al. have studied motion-based piezoelectric energy harvesting 

techniques and report the available power for a few human activities [14].  The available 

power from walking is ~1 W; the available power from breathing is ~100 mW; the 

available power from the upper limbs is ~10 mW; the available power from typing is 

~1 mW. 
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A simulation effort in COMSOL® by Varadrajan and Bhanusri has attempted to 

maximize the power output in a macro-scale unimorph piezoelectric cantilever beam 

energy harvesting system [15].  The authors vary the design parameters of the unimorph 

piezoelectric cantilever beam and test three different piezoelectric materials: PbZrTiO3 

(PZT), PVDF, and PMN-PT.  The beam length of Varadrajan and Bhanusri’s design is 

6 cm; the beam width is 3 cm; the beam thickness is 0.1 cm.  A large proof mass is 

mounted on the tip of the cantilever beam to lower the fundamental resonant frequency, 

to decrease damping, and to increase the output power.  With the addition of the proof 

mass, the fundamental resonant frequency is reduced to 153.22 Hz, which satisfies the 

author’s target to fall within the frequency range of common environmental vibrations 

between 60 Hz and 200 Hz according to their sources.  Varadrajan and Bhanusri report 

that varying the cantilever beam thickness has the greatest impact on the frequency of the 

device in comparison to varying strictly the length or the width.  They conclude that 

frequency is directly proportional to the thickness of the beam from the results of their 

simulations. 

Boisseau et al. report their findings on an electret-based cantilever energy 

harvester [16].  The authors conducted an optimization study on an electret-based 

cantilever energy harvester and determined from both theory and simulation that the 

maximum power they could achieve is 160 μW with a vibration amplitude of 10 μm at 

50 Hz.  The dimensions of the cantilever are 30 mm × 13 mm × 0.3 mm for the length, 

width, and thickness, respectively.  The experimental results for the power output are 

much lower than anticipated due to parasitic capacitances.  The load is reduced from 

2.2 GΩ down to 300 MΩ to reduce the effect of parasitic capacitances.  Boisseau obtains 
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an output power of 50 μW with a vibration amplitude of 10 μm at 50 Hz at low ambient 

vibrations accelerations of 0.1 g.  It is concluded that parasitic capacitances have a large 

impact on the behavior of the electret-based cantilever energy harvester and greatly 

depend on the load chosen. 

A discussion of thermal energy harvesting devices follows.  Both Seebeck and 

non-Seebeck devices are discussed to convey the differences between these two 

technologies.  Human-powered devices are also included in this review to articulate the 

challenges of operating thermal harvesting devices under constrained conditions. 

Seebeck Thermal Energy Harvesting 

It has been demonstrated that thermoelectric systems can be created using 

common fabrication techniques that are compatible with other wafer-based technologies.  

Bismuth Telluride (Bi2Te3), a common Seebeck thermoelectric material, is able to be 

processed using conventional fabrication methods.  Böttner et al. uses physical vapor 

deposition and photolithography to pattern the p-type and n-type thermoelements on two 

separate substrates [17, 18].  Through a sequence of sputtering and patterning steps, 

Böttner builds 20 ⨯ 40 ⨯ 80 μm3 thermoelements and connects them in series with metal 

interconnects.  The separate substrates are merged using flip-chip bonding, which is a 

popular procedure for thermoelectric devices due to the nature of alternating p-type and 

n-type thermoelement matrices.  The resulting device produces a power density of 

60 μW/cm2 with a temperature differential of 5 K.  The power density of this device is 

limited by the poor length to cross-sectional area ratio of the thermoelements.  

Thermoelement dimensions are factors that significantly impact the performance of 
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thermoelectric devices, which consequently produces a low power density in Böttner’s 

research effort. 

Device orientation is a novel geometrical effort that attempts to maximize the 

length to cross-sectional area ratio.  As mentioned in the description of Böttner’s work, 

the thermoelement geometrical dimensions influence the power density output.  Ideally, 

the thermoelement dimensions can contribute positively to the power density if the length 

is much greater than the cross-sectional area dimensions.  Conventional fabrication 

techniques are limited to depositing films not greater than a few hundred microns.  

Therefore, one proposed bypass to this issue is changing the device orientation from a 

through-plane orientation device to an in-plane orientation thermoelectric device.  Many 

researchers have explored the usage of the in-plane orientation as a means of obtaining 

large aspect ratios in thermoelement geometry.  Figure 6 shows two different orientations 

of thermoelectric arrays. 
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Figure 6.  Through-plane thermoelectric array (top), In-plane thermoelectric array 

(bottom) [1] 

In Figure 6, the indication of the direction of temperature flow is denoted by ΔT, 

which represents the temperature differential.  Böttner’s research, described above, is a 

through-plane orientation device.  An example of notable mention is a design from 

Glosch et al. which describes an in-plane orientation thermoelectric device [19].  Glosch 

attempts to present a simplistic thermal harvesting design that contains high aspect ratio 

thermoelements.  Glosch comprises the thermocouples of doped regions of c-silicon and 

aluminum connecting strips to act as the p-type and n-type elements.  The use of 

aluminum connecting strips circumvents the need to create complimentarily n-type doped 

thermoelements, which simplifies the fabrication process.  Both the aluminum strips and 
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the substrate itself are intentionally thin by design to prevent thermal shorting.  At a 

temperature difference of 4 K, the device produces 0.2 μW with thermoelement 

dimensions of 500 ⨯ 7 ⨯ 1.2 μm3.  Requirements differ for through-plane orientation 

versus in-plane orientation devices.  The former must have a high thermal conductivity 

substrate; the latter must have a low thermal conductivity substrate or a removable 

substrate.  Glosch’s design suffers from parasitic heat flow which greatly reduces the 

efficiency and overall performance of the thermoelectric device.  Fabrication simplicity 

and a large thermoelement aspect ratio are the strongest points of Glosch’s design.  

Future revisions to this work need to address parasitic heat flow issues so that the large 

thermoelement aspect ratio can be fully capitalized upon. 

Thermoelectric materials research has yielded significant breakthroughs in figure 

of merit values for thermoelectric systems.  Thermoelectric materials research focuses on 

restricting the transport of phonons in the device.  Device performance improves when 

the thermal conductivity is minimized; therefore, research targets phonon management, 

which is a component of thermal conductivity.  One way to restrict phonon transport is 

through low-dimensional materials, such as quantum wells, quantum wires, quantum 

dots, and superlattices [1].  One notable example of quantum confinement arises from 

Venkatasubramanian et al. by incorporating a superlattice structure into a room 

temperature thermoelectric device [20].  The p-type superlattice comprised of 

Bi2Te3/Sb2Te3 achieves a ZT value of 2.4 and the n-type superlattice comprised of 

Bi2Te3/Bi2Te2.83Se0.17 achieves a ZT value of 1.2.  These reported figures of merit are 

high when compared with other non-low-dimensional thermoelectric devices.  The 

fabricated device boasts a power density of 6.1 mW/cm2 at a temperature differential of 
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2.7 K.  The superlattice functions as a low-dimensional material and scatters photons 

within the crystal structure to improve the figure of merit.  Venkatasubramanian’s device 

is only able to produce an output voltage of 42 mV, which is roughly an order of 

magnitude smaller than the majority of low-temperature thermoelectric devices. 

One temperature-sensing self-powered autonomous sensor system that employs a 

thermoelectric module to harvest energy has been proposed and tested by Dalola et al. 

[21].  The system is designed to transmit the data via electromagnetic coupling when the 

readout unit comes within a distance of a few centimeters.  When the readout unit is not 

in proximity to the self-powered autonomous sensor, the thermoelectric generator (TEG) 

provides power for the sensor to perform a temperature measurement and store the data in 

non-volatile memory.  The system features a Seebeck TEG module that provides power 

for the autonomous sensor from a heat source.  The induced voltage on the TEG feeds 

into the DC-DC boost converter, which provides a 2.1 V to the microcontroller and the 

RFID transponder.  With the load connected, the temperature differential on the TEG 

must reach about 8.5 °C to produce a large enough input voltage (approximately 0.9 V) 

for the DC-DC boost converter to provide a stable output voltage of 2.1 V.  The 

microcontroller and temperature sensor consume 0.9 mW of power from the TEG.  Thus, 

Dalola’s experimental results show a functioning self-powered autonomous temperature 

sensing system using a small temperature differential. 

Hudak and Amatucci identify Seebeck thermoelectric devices to be the most 

conventional thermal harvesting method [1].  The most successful Seebeck materials are 

semiconductors; therefore, continuing investigation into microfabrication technologies 

and thermoelectric material science dominates conventional thermoelectric research.  An 
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analysis of the governing power equations for Seebeck thermoelectric devices has 

sparked acute observance to device aspect ratios and maximum achievable power density.  

But despite the advances made in Seebeck Effect thermoelectric devices, there are 

inherent problems and disadvantages associated with procuring effective Seebeck 

materials, mainly related to the Wiedemann-Franz Law.  Bismuth Telluride is an 

expensive material [22].  At room temperature, no bulk material has outperformed Bi2Te3 

alloys; researchers are forced to evoke quantum material properties to surpass the figure 

of merit ZT ~ 1.  Consequently, research concerning non-Seebeck thermal energy 

harvesting is being conducted.  Non-Seebeck devices can circumvent the intrinsic 

problem of Seebeck devices, which is overcoming the strong link between semiconductor 

electrical properties and semiconductor thermal properties (Wiedemann-Franz Law). 

Alternatively, other research efforts for direct thermoelectric applications to the 

human body are currently being investigated.  Leonov experiments with the integration of 

Seebeck thermoelectric devices into human clothing for ambient temperature thermal 

energy harvesting applications [23].  Leonov’s device is implanted into shirts to exploit 

the temperature differential between the human’s skin temperature (typical 33 °C) and the 

ambient surrounding air (typical 23 °C).  The implanted thermoelectric device has 

dimensions of a 5 mm thickness and a 3 cm diameter.  Depending on the activity of the 

human subject (stationary or moving) and the ambient air temperature, the device 

generates an output power between 1 mW and 4 mW.  Power generation is accomplished 

with a low heat flow rate, which does not cause discomfort to the human subject due to 

excessive parasitic heat flow.  Leonov admittedly states that a more ergonomic design 

would improve the performance of his system.  His system presents a competitive 
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alternative to battery use, but the cost of Seebeck thermoelectric systems is still an order 

of magnitude higher than the equivalent capability in the form of batteries; future 

research must close this gap in price and further miniaturize thermoelectric systems while 

still increasing power density. 

Non-Seebeck Energy Harvesting 

Regarding non-Seebeck research, the most relevant research to the current study 

is being conducted by a team of engineers from France.  The authors mentioned in this 

literature review who are associated with this team of engineers include Puscasu, 

Monfray, Boisseau, and Arnaud. 

Puscasu et al. initially propose an alternative MEMS-based heat energy 

harvesting device [2].  Puscasu’s system employs a two-stage energy conversion: first 

from thermal energy to mechanical energy, then from mechanical energy to electrical 

energy.  This two-stage conversion is realized using a preformed bimetal construct, which 

snaps between two stable states depending on its temperature.  The bimetal snaps into an 

upward and downward position, periodically, to make mechanical contact with 

piezoelectric material that generates a voltage signal.  The system still operates under the 

convention of having a hot side and a cold side (like all thermoelectric designs), but the 

mechanical movement of the bimetal beam transfers the heat.  Scaling laws factor into 

the maximum power output of these devices because the researchers show that when the 

bimetal is reduced in dimension by a factor of k, the oscillation frequency is increased by 

a factor of k2.  Therefore, the proposed system benefits from miniaturization by a net 

factor of k. 
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In addition to bimetal-based thermal energy harvesters, Monfray et al. describe 

and test a prototype of thermofluidic harvesting system [24].  The thermofluidic energy 

harvester operates on a repeating cycle of evaporation and condensation of a working 

fluid inside a sealed cavity.  The temperature of the hot side is above the boiling point of 

the working fluid, while the temperature of the cold side is below the boiling point of the 

fluid.  This design creates significant pressure within the cavity as the fluid changes 

between liquid and gaseous states; the pressure change is captured by a piezoelectric 

membrane and converted into a voltage.  Monfray proposes two separate configurations 

for the thermofluidic energy harvester: a vertical design and a lateral design.  The scaling 

laws described in [2] also govern the output power generated by the thermofluidic energy 

harvester.  In a 2 cm2 prototype of the vertical design, the authors are able to achieve 

voltage peaks between 2 and 3 V in steady state.  No power density is reported. 

The next iteration of the MEMS-based heat energy harvesting concept from 

Puscasu’s research team is a discussion of prototype designs based on the analytical 

models of the system [3].  The first prototype designs are built, and Puscasu et al. discuss 

the actual results compared with the theoretical potential.  Most notably, they indicate the 

potential for capturing the maximum mechanical energy in the bimetal during its 

oscillation cycle.  Theoretically, the mechanical power density of the snapping bimetal is 

calculated to be 2.7 mW/cm2.  According to the k scaling laws mentioned earlier, a 

reduction in the device dimensions by a factor of ten would result in a bimetal 

mechanical power density of 27 mW/cm2.  A power density of 27 mW/cm2 is orders of 

magnitude higher than the power density of cutting edge Seebeck thermoelectric 
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technologies.  But real-world efficiency limitations would not allow all of the mechanical 

energy to be converted to electrical energy. 

Boisseau et al. discuss the concept of coupling bimetals and electret-based 

converters to harvest energy from thermal gradients [22].  Bimetal strip technology and 

electret technology have existed for a while, but combining them for use as a heat engine 

for energy harvesting purposes is new.  Electrets are electrically charged dielectrics able 

to keep their charge for years, and they enable direct mechanical-to-electrical conversion 

by acting as a permanent polarization source in electrostatic converters.  The use of 

electrets greatly simplifies the power management required in electrostatic energy 

harvesting designs.  Boisseau states that curved or stamped bimetallic strips are 

complicated devices that display strong nonlinear behaviors and snap between two stable 

positions through sudden buckling that is dependent on temperature with a hysteretic 

behavior.  Figure 7 shows the design of the bimetal and electret based converter for 

thermal energy harvesting. 

 

Figure 7.  Bimetal and electret based converter for thermal energy harvesting [22] 

The design features electret material and electrodes on both the hot source and the 

cold source such that power can be generated both when the bimetal snaps upward and 

when the bimetal snaps downward.  With the use of an electret surface voltage of 500 V 
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and a hot side of 60 °C, the mean power output per device is 13.46 μW.  The bimetal 

snapping frequency is 1-3 Hz.  The cold side of the device is cooled to 36 °C by forced 

convection through the use of a fan.  The prototype tested in this experiment features a 

bimetal that is designed to snap at 47 °C and to snap-back at 42.5 °C for a 4.5 °C 

hysteresis cycle.  The authors state that this prototype is non-optimized and suffers from 

losses in the thermal-to-mechanical energy conversion step.  The reported Carnot 

efficiency is between 0.1% and 0.5%.  The device reliability is high. 

The next iteration of research on bimetal and electret based thermal energy 

harvesters by Boisseau seeks to address the efficiency problems identified in his previous 

publication [25].  In the previous design, without forced convection cooling, a sufficient 

temperature gradient is unable to be maintained to keep the bimetal oscillating because 

the thermal control between the two steel layers is not optimized.  This limitation is 

addressed by employing limiting thermal bridges between the two plates.  Figure 8 shows 

the changes made in the design of the bimetal and electret based thermal energy 

harvester. 

 

Figure 8.  Improved design of bimetal and electret based converter for thermal energy 

harvesting [25] 
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The hot point is a small cylinder of copper designed to act as a limiting thermal 

bridge.  Other differences include that a heat sink has been added to the design and a now 

only one electret material remains on the cold side of the device.  Boisseau reports high 

electromechanical coupling in the improved design.  As the surface voltage of the electret 

increases, the output power of the device increases, but the snapping frequency of the 

bimetal decreases.  However, the generated power of the device ceases to increase for 

electret surface voltages beyond 600 V.  The maximum power attained with the improved 

design is 5.4 μW per device on a hot source of 70 °C. 

Arnaud et al. discusses the piezoelectric principles and optimization for the 

conversion of kinetic energy into electrical energy [26].  The new design modification is 

that a piezoelectric patch now functions as the electro-mechanical transducer and as the 

thermal dissipater for the bimetal strip.  The piezoelectric patch replaces the need for a 

heat sink.  This optimization raises the harvested energy to 24.6 μJ per snap compared 

with previous designs that generated 1.8 μJ per snap.  Arnaud identifies the benefits of 

scaling the size of the device down to the micrometer scale.  Parasitic capacitances in the 

larger-sized devices are limiting factors for the efficient operation of a power 

management circuit.  Device down-scaling reduces the impact of these parasitic 

capacitances.  Additionally, the advantages of down-scaling bimetal strips include 

achieving higher thermal energy transfer rates, higher switching speeds, higher snapping 

frequencies, and capacitance variations.  These advantages lead to overall increased 

device efficiency and increased power density.  Figure 9 shows a graphical display of the 

stability of Ti-Au bimetal strips versus the bimetal strip thickness for a fixed length of 

200 μm. 
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Figure 9.  Stability of Ti-Au bimetal strips (L = 200 μm) [26] 

δo represents the initial curvature of the bimetal.  A critical ratio governs the 

behavior of the bimetal strips: δo > t / √3, where t is the total bimetal thickness.  If δo is 

less than the ratio, then the snapping quality of the bimetal ceases and only gradual 

buckling movement occurs.  Arnaud also presents a process for producing micro-sized 

bimetal strips using common fabrication procedures.  A photoresist is patterned into 

arrays of rectangles; the photoresist is then reflowed to produce rounded edges.  The two 

materials that compose the bimetal are deposited; the bimetal materials are patterned and 

etched.  Lastly, the photoresist is removed, and the devices are released. 

The next iteration of the research conducted by Puscasu’s team concerns a further 

analysis of the theory that governs the operation of a dual-stage MEMS thermal energy 

converter [4].  In the article, the authors outline both the thermomechanical conversion 

laws and the electromechanical conversion laws that apply to the device.  The 

relationships between variables in the equations yield a beneficial result when the 
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dimensions of the device are scaled down by a factor of k.  Their analytical findings are 

summarized below in Table 1. 

Table 1.  Parameter Evolution from Dimension Down-Scaling [4] 

Variable Name Effect From 
Scaling 

Scaling 
Factor 

Frequency ↑ Increase k2 
Snap Temperature Ø None Same 
Bimetal Force ↓ Decrease k2 
Piezoelectric and Bimetal Deflection ↓ Decrease k 
Stress and Strain Inside Piezoelectric Ø None Same 
Piezoelectric Capacitance ↓ Decrease k 
Piezoelectric Voltage ↓ Decrease k 
Transmitted Thermal Power / Surface ↑ Increase k 
Mechanical Power / Surface ↑ Increase k 
Electrical Power / Surface ↑ Increase k 

 

As denoted in Table 1, the parameters of the thermal harvesting device responded 

differently to down-scaling the dimensions of the device.  It should be noted that there are 

limits to the increases/decreases of these variables.  Infinite heat flux and infinite 

electrical power are unrealizable objectives.  As the dimensions of the device are scaled 

down, the frequency of the bimetal oscillation increases by a factor of k2, but the 

temperature gradient dropped across the device will also decrease due to a higher 

transmitted thermal power.  Therefore, the bimetal oscillation will eventually encounter a 

limiting factor that prevents continued increase by a factor of k2.  The article concludes 

by mentioning that the optimal working scale will be determined entirely by the 

application of the system and the demands of the electrical load. 

The latest iteration of research conducted by Puscasu’s team describes the actual 

fabrication of the system and the performed testing on the device [5].  The device is 

arranged on a flexible Teflon substrate.  Harnessing the voltage from the impacted 
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piezoelectric strip and rectifying the signal yields voltage peaks of up to 16.5 V.  The 

oscillation frequency of the device is 2.4 Hz.  With only a 3 K temperature differential, 

Puscasu reports a power density of 60 μW/cm3, which is comparable to most current 

Seebeck devices.  In two-dimensions, the power density for Puscasu’s fabricated devices 

is 0.509 μW/cm2.  There are still even further advantages of Puscasu’s design including 

device operation in the absence of a heat sink and superior/economical thermal 

management.  Thus, a viable thermal energy harvesting alternative for Seebeck devices is 

fabricated that displays desirable advantages.  However, Puscasu indicates areas of 

improvement for his work; the device efficiency and cell-to-cell variability needs 

improvement. 

Derivation 

An analytical basis for the dual-stage MEMS cantilever energy harvester that is 

researched in this thesis has been adapted from Lee and is presented in this Derivation 

section [27].  Starting with the mechanical behavior due to strain changes in composite 

material cantilever actuators, the moment equilibrium condition that governs the 

deformed shape of a composite beam is as follows: 

1 2
1 2

t tM F +
= −      (1) 

where M is the moment acting on the cantilever beam, F1 is the tensile force 

acting on the upper layer, t1 is the thickness of the upper layer, and t2 is the thickness of 

the lower layer.  The indices “1” and “2” refer to the upper and lower layers of the 

composite cantilever beam, respectively.  The longitudinal stresses of the upper layer and 

the lower layer are as follows: 
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( )2
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δ δ

σ ε ε ε
−

= = = −      (3) 

where σx is the longitudinal stress, Ẽ is the respective Young’s Modulus, εx is the 

longitudinal strain, δf is the elongation displacement, and l is the beam length.  Because 

of the force equilibrium, it follows that: 

1 1 2 2 0x xA Aσ σ+ =      (4) 

where A is the cross-sectional area of its respective layer.  By substituting, the 

strain of the straight beam is written as: 

1 1 1 2 2 2

1 1 2 2
f

E A E A
E A E A
ε εε +

=
+

 

 
     (5) 

using equations (2) and (3).  After substituting back into the longitudinal stress 

equations, the stresses yield: 

( )2 2 2 1
1 1

1 1 2 2
x

E A
E

E A E A
ε ε

σ
−

=
+




 
    (6) 
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    (7) 

using equation (5).  The relative strain is defined as: 

2 1
2 1l

δ δε ε ε−
= = −      (8) 

and three ratios of the geometric/material properties between the two layers are 

defined as: 
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    (9) 

to aid the management of terms in the derivation.  Using the three newly defined 

equations in (9), the stress equations can be written as: 

1 2 1x
rE
pqr
εσ =

+
      (10) 

2 2 1x
pqrE

pqr
εσ = −

+
      (11) 

by substitution.  The moment condition is applied, and the moment equation is 

solved as: 

( )2
2 2 2

1 1
2 x effM w t p Mσ= + = −    (12) 

where Meff is the effective moment.  The resulting radius of curvature from the 

deflecting beam is as follows: 

( ) ( ) ( )( )2 2
2
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6 1
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ρ
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   (13) 

where ρ is the radius of curvature, and (ẼI)eff is the effective flexural rigidity.  The 

radius of curvature is written as: 

( )
2

2
1 11

2 3 1
t pqr p

pqrp
ρ

ε

  +
= + +  

+    
    (14) 

after simplifying.  The relative strain can be written as: 

312 1

1

d V
l t

δ δε −
= =      (15) 
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31

1

1 dp V
p t

ε +
=      (16) 

where d31 is the bending charge constant, and V is the voltage.  By substituting 

into equation (14), the new radius of curvature is: 

( )

2
2

2
31

1 11
2 1 3 1
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ρ
  +

= + +  + +    
    (17) 

with a maximum deflection of: 
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22
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2
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where yl is the vertical deflection.  Further substitution for the relative strain 

yields: 

( )( )2 1
2 1 H CT T

l
δ δε α α−

= = − −     (19) 

where α is the respective coefficient of thermal expansion, and TH and TC are the 

temperatures of the hot side and cold side, respectively.  By substituting into equation 

(14), the next radius of curvature is: 

( )( ) ( )
2

2
2 1

1 11
2 3 1H C
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α α
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with a maximum vertical deflection of: 
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after substituting.  By setting equations (18) and (21) equal to each other, the 

relationship between voltage and thickness can be determined: 

( )( )2 1

31

1 1~
2

H CT T t
V

d k
α α− −

=     (22) 

to predict the effect of bimetal thickness scaling.  This relationship agrees with 

Puscasu’s research by predicting a decrease in output voltage by a factor of k when the 

cantilever beam’s dimensions are scaled down by a factor of k.  This claim agrees with 

the derivations found in Puscasu’s research. 

To determine the scaling relationship between the cantilever dimensions and the 

operational frequency, the heat transfer characteristics are described by the 

one-dimensional heat conduction equation: 

2

2
t

s

Qd T
dx k A

= −


     (23) 

where T is the temperature, x is the axis defined along the length of the cantilever, 

tQ is the generated heat, ks is the thermal conductivity, and A is the cross-sectional area.  

This equation can be solved using the boundary conditions TC at x = 0 and TH at x = l to 

give the following temperature equation: 

( )
22

2
t

H C C
s

Q l x x xT T T T
k A l l l

  = − + − +  
   


   (24) 

where TH and TC are the respective hot and cold temperatures, and l is the 

cantilever beam length.  Adapting the equation to model a cantilever beam with one fixed 

end, the boundary conditions T = TC at x = 0 and dT/dx = 0 at x = l results in: 
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to find the temperature along the beam.  One simplification to find the 

temperature at x = l yields: 

2

2
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H C
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Q lT T
k A
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     (26) 

after substituting.  With the equation in this form, the scaling relationship between 

the cantilever dimensions and time becomes evident.  tQ is defined as the heat generated 

per unit beam length per unit time.  Therefore, similar k-factor logic from the analytical 

derivations featured in [2, 4] explains the effect of dimensional scaling as it relates to the 

cantilever beam oscillation frequency and ultimately the electrical power output.  Noting 

the relationship between tQ and l2 in equation (26), time is directly proportional to the 

square of the length: 

2~t l       (27) 

which implies that the frequency is directly proportional to the inverse of the 

square of the length: 

2
2

1~ ~f k
l

     (28) 

predicting that a reduction in device dimensions by a factor of k would increase 

the cantilever beam oscillation frequency by a factor of k2.  This claim agrees with the 

derivations found in Puscasu’s research.  The electrical energy produced by the 

piezoelectric material is defined as: 
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21
2el pE C V=      (29) 

where Eel is the electrical energy, Cp is the capacitance, and V is the generated 

voltage.  To account for the increased number of devices inherent in the k-factor scaling 

construct, the number of devices relates as: 

~sN k      (30) 

where Ns is the unit-less total number of devices.  Finally, the total electrical 

power is derived by combining equations (28), (29), and (30): 

~eltot s elP N E f k=     (31) 

where Peltot is the total electrical power generated by Ns number of devices.  While 

maintaining a fixed total area, the total electrical power ultimately increases by a factor of 

k when the device dimensions are scaled down by a factor of k.  This claim also agrees 

with the analytical derivations found in [2, 4]. 

Summary 

A summary of the previously conducted research and necessary future research in 

the subfield of non-Seebeck thermal energy harvesting methods is as follows.  As with all 

aspects of the thermal energy harvesting field, improving device power density is a key 

objective [1].  Additionally for non-Seebeck thermal energy harvesters, efficiency 

becomes another key area of improvement.  Puscasu et al. state that one of the major 

needs for future research on dual-stage thermal MEMS energy converters is the energy 

conversion efficiency [5].  The design of these converters inherently involves two stages 

of energy conversion, which allows the opportunity for losses to occur in each energy 
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transition process.  The authors identify that a snapping bimetal that absorbs its own 

kinetic energy will induce losses in the thermal to mechanical energy conversion.  The 

authors also identify that the mechanical to electrical energy conversion efficiency is on 

the order of a few percent because only the forward snap energy is captured by the 

piezoelectric transducer.  Bimetals that do not absorb their own kinetic energy and 

piezoelectric transducers that have low mechanical damping and high coupling factors 

will address these efficiency obstacles.  Especially in forms of low-power applications, 

efficiency is paramount since voltage and current magnitudes are already small. 

Energy harvesting applications that involve the human body are low power also 

and generate milliwatt-size signals according to current technology [23].  Future research 

for thermal energy harvesting applied to the human body requires device miniaturization 

because wearable devices must be both ergonomic and unobtrusive in nature.  

Non-Seebeck devices offer a viable solution to this requirement because they show 

increasing promise for out-performing the semiconductor-based thermal energy 

harvesters without the use of a heat sink. 

Table 2 shows a summary of the key parameters for the research presented in this 

literature review. 
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Table 2.  Summarized list of performance metrics for the surveyed energy harvesters 

Author Year Device Type Device Dimensions Voltage Power Density 

Xie [9] 2014 Piezoelectric 0.2/0.4 m ⨯ 1 m ⨯ 1 m  12.7 W 
Lin [10] 2013 Electrostatic 2 mm ⨯ 2 mm ⨯ 0.03 mm 15 V 2.5 µW 
Arakawa [12] 2004 Electrostatic 20 mm ⨯ 20 mm ⨯ 2 mm 200 V 7.5 µW/cm3 
Shenck [13] 2001 Piezoelectric   8.4 mW 
Varadrajan [15] 2013 Piezoelectric 6 cm ⨯ 3 cm ⨯ 0.1 cm 0.1166 V 0.18 µW/cm2 
Boisseau [16] 2011 Electrostatic 30 mm ⨯ 13 mm ⨯ 0.3 mm  12.82 µW/cm2 
Böttner [17, 18] 2004 Seebeck Thermoelectric 20 µm ⨯ 40 µm ⨯ 80 µm  60 µW/cm2 
Glosch [19] 1999 Seebeck Thermoelectric 500 µm ⨯ 7 µm ⨯ 1.2 µm 0.4 V 0.2 µW 
Venkatasubramanian [20] 2001 Seebeck Thermoelectric  0.042 V 6.1 mW/cm2 
Dalola [21] 2008 Seebeck Thermoelectric  0.9 V 0.9 mW 
Leonov [23] 2013 Seebeck Thermoelectric 3 cm ⨯ 3 cm ⨯ 5 mm  1-4 mW 
Monfray [24] 2012 Non-Seebeck Thermoelectric 2 cm2 2-3 V  
Puscasu [3] 2012 Non-Seebeck Thermoelectric 36 mm ⨯ 18 mm ⨯ 0.2 mm 10 V 0.772 µW/cm2 
Boisseau [22] 2013 Non-Seebeck Thermoelectric 34 mm ⨯ 12 mm ⨯ 1.5 mm >400 V 22 µW/cm3 
Boisseau [25] 2013 Non-Seebeck Thermoelectric 20 mm ⨯ 10 mm ⨯ 0.115 mm >600 V 6.4 µW 
Puscasu [5] 2014 Non-Seebeck Thermoelectric 36 mm ⨯ 18 mm ⨯ 3.8 mm 16.5 V 0.509 µW/cm2 

 

New novel methods in energy harvesting for capturing energy are constantly 

being presented and challenging the previously established limitations.  The next chapter 

will discuss the adopted methodology for this thesis research. 
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III.  Methodology 

Chapter Overview 

The methodology of this experimentation is designed to observe the effect of 

bimetal thickness scaling and test the performance of the cantilever design of the 

dual-stage MEMS cantilever energy harvester.  The remaining sections of this chapter 

describe the system boundaries within the simulation environment, the pertinent variables 

that govern the operation and performance of the dual-stage MEMS cantilever energy 

harvester, the campaign of experiments, and methods for analyzing the results of the 

simulations. 

Experiment Design 

a. Design Overview 

Using the bimetal and piezoelectric based harvester from the literature as a 

starting point, a cantilever-based design is proposed in this research [5].  The dual-stage 

MEMS cantilever energy harvester is a beam design composed of three layers.  The 

bottom active layer is aluminum; the middle passive layer is SiO2; the top piezoelectric 

layer is PZT-5H.  One major difference in the design configuration of dual-stage MEMS 

cantilever energy harvester when compared with the bimetal and piezoelectric based 

harvester from the literature is that the design is not impact-based.  The aspect of 

transferring mechanical energy to the piezoelectric material through impact is removed to 

improve the energy conversion efficiency of the piezoelectric material.  The output 

energy of piezoelectric ceramics is orders of magnitude larger when achieved through 

gradual stress as opposed to impact stress [28].  Therefore, one intended advantage to 
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depositing the piezoelectric material directly on the bimetal is to gain the benefits of 

using a gradual stress design instead of using an impact stress design.  The fixed end of 

the beam is the cold side of the device.  The free end of the beam makes contact with the 

hot side of the device.  The dual-stage MEMS cantilever energy harvester operates by 

heating up while it remains in contact with the hot side; the change in temperature 

induces a mechanical stressing response in the cantilever beam due to the bimetal 

characteristics.  The mechanical stressing response of the cantilever beam generates a 

voltage potential on the piezoelectric material.  Therefore, the device is dual-stage 

because it first converts thermal energy into mechanical energy and then converts 

mechanical energy into electrical energy. 

b. Objectives 

The objective of the experimentation is to compare the performance of the 

dual-stage MEMS cantilever energy harvester in simulation as the thickness parameter is 

altered over one order of magnitude.  The performance of the dual-stage MEMS 

cantilever energy harvester will also be compared with the performance of Seebeck 

devices as well as the bimetal and piezoelectric based harvester from the literature [5].  

An increase or decrease in performance will be determined by the change in the identified 

response variables. 

c. System Boundaries 

The chosen simulation environment for this research is COMSOL® Multiphysics.  

Using this software, the user is able to define the system boundaries that govern the 

physics which determine the operation of the device.  Users create COMSOL® models in 

the Model Builder window, which contains all definitions that describe the simulated 
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system.  The thickness scaling for the dual-stage MEMS cantilever energy harvester 

design is tested in two dimensions.  Though the design will be modeled in 2D, 

COMSOL® allows the user to enter the thickness of the design to account for the third 

dimension.  Therefore, the power density in units of W/cm2 is able to be extracted from 

the simulation results due to the thickness consideration. 

Figure 10 shows the two-dimensional design layout and the material assignment 

for each domain. 

  

Figure 10.  2D layout of dual-stage MEMS cantilever energy harvester design 

The two-dimensional model functions as a cross-sectional slice of the device and 

is built under the Geometry node in COMSOL®.  The design consists of a single 

geometry composed by the union of three domains.  The lower domain (domain 1), 

middle domain (domain 2), and upper domain (domain 3) represent the active layer, the 

passive layer, and the piezoelectric material, respectively.  Each domain is assigned a 

material under the Materials node.  The active layer is composed of Aluminum, which 
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has a CTE of 23e-6 K-1.  The passive layer is composed of silicon dioxide, which has a 

CTE of 0.5e-6 K-1.  Therefore, the CTE of the two bimetal materials differ by a factor of 

46.  PZT-5H was chosen as the piezoelectric material.  PZT-5H is very similar in material 

properties to the more common PZT-5A, but it has higher sensitivity and permittivity 

than PZT-5A [29].  One drawback of PZT-5H is a limited temperature working range, but 

for the temperature applications presented in this research, this drawback is avoided. 

Figure 11 shows the important boundary definitions that govern the operational 

characteristics of the device. 

 

Figure 11.  Boundary definitions of the dual-stage MEMS cantilever energy harvester 

The leftmost boundary of the bimetal is designated a fixed boundary to model the 

presence of the cantilever beam’s anchor.  The cantilever’s anchor is also modeled as the 

cold side of the device, where the heat in the arm of the cantilever escapes once the 

cantilever comes out of contact with the hot side.  The 10 μm boundary section on the 

underside of the active layer is designated as the hot side.  The hot side is modeled as a 
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temperature boundary and is fed a heat input function that brings the boundary to the 

temperature of the hot side briefly, which is representing the time that the cantilever 

beam would be in contact with the hot side.  The topmost boundary is designated as 

ground and represents the grounded terminal of the piezoelectric material.  The bottom 

boundary of the piezoelectric material is designated terminal, which is where the 

boundary probes read the voltage signal generated by the piezoelectric material. 

The setup requires three physics packages solved simultaneously to compute the 

solution.  The first employed physics package is Piezoelectric Devices.  Each fixed 

constraint and terminal assignment is listed under the Piezoelectric Devices node.  

Domain 3 is designated as the piezoelectric material, which is orientated in the Material 

XZ-Plane coordinate system.  Domains 1-3 are specified as Linear Elastic Material.  As a 

subset of the Linear Elastic Material subnode, the bimetal is given a Thermal Expansion.  

Thermal Expansion allows the user to set the strain reference temperature and apply 

model input temperatures to the bimetal domains.  The strain reference temperature 

describes the temperature where there are zero stresses or strains in a material; for this 

research, the strain reference temperature is set to the temperature of the cold side at 

296.15 K.  The model input temperature is set as an iteratively tuned piecewise function 

that represents the transfer of heat between domains once they make contact.  The Fixed 

Constraint is applied to the leftmost boundaries of the bimetal to model the presence of 

the anchor.  The upper boundary of the piezoelectric material is designated a Ground 

node, while the lower boundary of the piezoelectric material is designated a Terminal 

node to extract the electrical response of the PZT-5H. 
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The second employed physics package is Heat Transfer in Solids.  This package 

models the thermal characteristics of the bimetal.  A Temperature node designates the 

leftmost boundary of the bimetal as the temperature of the cold side at 296.15 K.  

Another Temperature node designates the contact boundary on the bimetal as the heat 

input function that models the latching operation of the dual-stage MEMS cantilever 

energy harvester. 

The third employed physics package is Electrical Circuit.  This package uses the 

Ground and Terminal nodes under the Piezoelectric Devices package to form a virtual 

circuit.  The output circuit is composed of a 1 kΩ resistor acting as the load.  A 1 kΩ 

resistor is chosen to avoid the difficulties described in the literature review where energy 

harvesting devices suffer losses in output power from parasitic capacitances.  Parasitic 

capacitances have been linked with high-resistance loads and must be accounted for in 

the design of the energy harvesting system [16].  It is understood that a real-world 

implementation of the dual-stage MEMS cantilever energy harvester would need to be 

impedance matched to the particular biomedical sensor or electronic device for which the 

energy harvester provides power. 

The Mesh node describes the how each domain is partitioned into finite elements.  

The device components are meshed using a Mapped Distribution.  A total of 100 

boundary elements are mapped along the lower boundary of the bimetal.  2 boundary 

elements are mapped along the rightmost edge of the bimetal; 2 boundary elements are 

mapped along the rightmost edge of the piezoelectric material.  Therefore, the complete 

mesh consists of 400 domain elements.   
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The employed solver is a Time-Dependent study.  A backward differential (BDF) 

solver is chosen with an intermediate time-stepping method.  The Direct solver is 

enabled, and the Fully Coupled subnode is added to the study.  The Fully Coupled 

subnode forces the solver to simultaneously evaluate all three physics packages at the 

same time rather than independently. 

d. Assumptions and Limitations 

Simulations often suffer from limitations in their ability to exactly predict 

real-world operation of models.  This subsection discusses the assumptions and 

limitations present in this body of research and their effect on a real-world 

implementation of the dual-stage MEMS cantilever energy harvester. 

One key characteristic that makes the operation of the dual-stage MEMS 

cantilever energy harvester effective is that the cantilever arm must remain in contact 

with the hot side of the device to heat the active layer enough before the beam deflects.  

This concept is referred to as latching.  Latching involves holding the beam against the 

hot side with an external force to allow significant transfer of heat.  Within the 

simulation, this effect is achieved by the heat input function that applies the temperature 

of the hot side to the contact area for a brief amount of time, which is tuned to return the 

highest peak voltage out of the device.  In a real-world implementation, this effect could 

be achieved in a number of ways.  The first proposed method is to employ permanent 

magnets to hold the tip of the cantilever beam down long enough to heat.  This system 

requires no external circuitry, but accommodations would have to be made for additional 

weight and heat transfer effects.  Employing permanent magnets takes advantage of the 

characteristics of magnetic forces that drop off with 1/r2 (with distance r) in the near field 
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and with 1/r3 (with distance r) in the far field.  Therefore, the attractive force between the 

cantilever beam tip and the hot side would be greatest when the two objects were in 

contact and weakest when the cantilever beam reached maximum deflection.  One 

challenge that employing permanent magnets encounters is that current wafer-scale 

fabrication techniques are not suited for depositing and patterning magnetic materials [1].  

The second proposed method is to electrostatically maintain contact between the 

cantilever beam tip and the hot side.  This system does require external circuitry, but no 

accommodations for additional weight or heat transfer effects would be necessary.  A 

voltage pad with an accompanying dielectric layer would be deposited underneath the 

cantilever beam, but not interfering with the hot side.  The voltage would be set at a 

constant negative voltage to take advantage of the characteristics of electrostatic forces 

that drop off with 1/r2 (with distance r).  Therefore, the attractive force between the 

cantilever beam and the voltage pad would be greatest when the cantilever experienced 

zero deflection and weakest when the cantilever beam reached maximum deflection.  One 

variation on this method is to use a square wave as the signal on the voltage pad that is 

synced with the frequency of the cantilever beam’s displacement cycle.  In both 

variations, the only power consumption suffered is leakage losses in the external circuitry 

because there is no closed circuit in these two proposed methods.  The signals on the 

voltage pad could be generated from the electrical output of the dual-stage MEMS 

cantilever energy harvester.  From the use of output-generated voltage signals, there 

would be a transitory period of reduced efficiency until the device reached full efficiency 

at steady state.  The third proposed method is to use an electret material to latch the 

cantilever beam.  Electrets are stable electrically charged dielectrics that are capable of 
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holding their charge for many years (high reliability).  This system requires no external 

circuitry, and no accommodations have to be made for additional weight or heat transfer 

effects; thus, it is the most desirable latching technique.  The voltage would be set at a 

constant negative voltage to take advantage of the characteristics of electrostatic forces 

that drop off with 1/r2 (with distance r).  Therefore, the attractive force between the 

cantilever beam and the voltage pad would be greatest when the cantilever experienced 

zero deflection and weakest when the cantilever beam reached maximum deflection. 

The contact area, as defined in the simulation, is where the underside of the 

cantilever beam and the hot side of the device overlap.  The contact area used for this 

research is a 10 μm × 10 μm square.  In real-world MEMS devices, stiction can become 

an issue for large contact areas.  Stiction can be avoided through material choice and the 

use of dimples in the design.  A real-world implementation of the dual-stage MEMS 

cantilever energy harvester might use gold on the top surface of the hot side and place 

dimples on the underside of the cantilever beam’s contact area to ensure that stiction does 

not prevent the device from operating.  The use of gold improves the reliability of the 

device over time, and the dimples minimize the surface area shared between the two 

objects in contact to mitigate the possibility of the objects becoming stuck together by 

surface adhesion forces. 

Another assumption that is crucial to the design of the dual-stage MEMS 

cantilever energy harvester is that the cantilever beam must be thermally isolated from 

the hot side of the device with the exception of the contact area.  If the substrate is to be 

considered the hot side of the device, then the cantilever beam must be anchored to a 

thermally insulating layer that separates the cantilever from the substrate.  Thermal 
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isolation is paramount because the cantilever is modeled as the cold side of the device.  

Therefore, heat transfer between the hot side and cold side of the device that does not 

contribute to the mechanical deflection of the beam degrades the efficiency. 

e. Identified Variables 

Variables for three dimensions are identified and included in this section.  The 

primary response variable is the power density.  The electrical power density is 

commonly measured in Watts per square centimeter (W/cm2) for energy harvesting 

devices and is the most important performance metric in this thermal energy harvesting 

system.  The ultimate goal of an effective modular energy harvesting system is the 

maximization of the electrical power density because the devices must not deliver 

maximum power only; they must deliver maximum power while also using space 

efficiently.  Variables of lesser importance that function as response variables are the 

bimetal oscillation frequency, mechanical force developed, beam deflection, voltage, 

transmitted thermal power density, and mechanical power density.  These response 

variables result from the control variable inputs and determine a system response for the 

device. 

The control variables of interest in this body of research are the thickness of the 

bimetal and the heating interval of the contact area.  The length and width of the beam are 

fixed at 20 μm and 10 μm, respectively.  The bimetal thickness is scaled over one order 

of magnitude from 10 μm down to 1 μm to affect the response variables.  The employed 

materials in the device are chosen as aluminum, silicon dioxide, and PZT-5H.  Excluding 

the parts not built in the simulation, in its most basic form, the design of the dual-stage 

MEMS cantilever energy harvester consists of three unique materials to achieve the 
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thermal, mechanical, and electrical characteristics that enable an energy harvesting 

system.  These three materials are easily interchangeable in the simulation environment 

by entering the applicable material properties.  The mentioned control variables and the 

specific levels associated with each are listed in Table 3. 

The most notable constant in this body of research is the temperature gradient, 

which will be held constant at a 10 °C differential between the temperatures 33 °C 

(human skin) and 23 °C (ambient air).  Additional constants include the length and width 

of the cantilever and the materials used in the simulation.  The variables are summarized 

in Table 3 below. 

Table 3.  Variable Summary 

Response Variables Power Density (μW/cm2) Peak Voltage (V) Frequency (Hz) 

Control Variables 
Factors Geometry (mm) Heat Input Function (K) 

Levels Bimetal Thickness (1x – 0.1x) Latching Time (0.09 μs – 0.15 μs) 

Constants 
Hot Side Temperature (33 °C) Cold Side Temperature (23 °C) 
20 μm Cantilever Beam Length 10 μm Cantilever Beam Width 
100 μm2 Contact Area 1 kΩ Resistive Load 

 

f. Data Analysis and Interpretation 

COMSOL® is a deterministic software, meaning that for one particular unique and 

adequate set of inputs, COMSOL® will return the same unique and identical output every 

single time the user runs the simulation.  A deterministic output that has no variance 

severely limits any statistical analysis, but the main goal of this research is to compare the 

device performance through varying the control variables to find a superior design that 
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competes with Seebeck performance and with the performance of non-Seebeck devices 

from the literature [5]. 

The compiled test matrix provided in Table 4 describes the campaign of 

experiments that is expected to satisfy the research objectives. 

Table 4.  Test Matrix 

Test Control Variables Response Variables 
 Bimetal Thickness Heat Input Function Power Density Peak Voltage Bimetal Oscillation Frequency 
1 1 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
2 0.75 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
3 0.5 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
4 0.45 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
5 0.4 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
6 0.35 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
7 0.3 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
8 0.25 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
9 0.2 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 

10 0.15 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
11 0.125 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 
12 0.1 ⨯ Thickness 0.09 μs – 0.15 μs Power Density Peak Voltage Bimetal Oscillation Frequency 

 

As featured in the test matrix, the thickness scaling has been designed to cover 

one order of magnitude as a means of determining the extent to which the analytical 

model holds true over a wide range.  For all cases, the power density, peak voltage, and 

bimetal oscillation frequency are the most desired response variables.  Therefore, each 

response variable can be plotted against the bimetal thickness to determine the 

relationship. 

For all response variables, the simulation results are expected to follow the 

analytical models that are outlined in the literature [2, 3, 4, 5].  Although analytical 

derivation and simulation are both abstract approaches to modeling the dual-stage MEMS 
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cantilever energy harvester, they will undoubtedly produce different power density 

results because the former is a theoretical method while the latter is a numerical method. 

Summary 

An approach for determining the effects of device miniaturization through bimetal 

thickness scaling has been presented.  The next section will discuss the results of the 

research. 
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IV.  Analysis and Results 

Chapter Overview 

This section presents the results of the 2D simulations of the dual-stage MEMS 

thermal energy harvester.  Experimentation in this research addresses aspects of varying 

the control variable: bimetal thickness.  The simulation process determines how the 

control variable affects the response variables and is recorded in this chapter.  The 

campaign of experiments described in the test matrix from the Methodology chapter 

yields the following results. 
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Larger Bimetal Thicknesses 

From the test matrix in Table 4, the bimetal thickness scaling ranges one order of 

magnitude from 10 μm down to 1 μm.  Each tested cantilever beam responds similarly 

when in contact with the hot surface by curling upwards as a result of the expanding 

active bimetal layer.  The results from the 5 μm bimetal thickness simulation are 

presented below to explain the behavior of the cantilever beam at larger bimetal 

thicknesses.  Figure 12 shows the contact area of the 5 μm thick bimetal cantilever as it is 

heated by the hot surface. 

 

Figure 12.  Expanding active bimetal layer (deformation scale 500; PZT layer not shown) 
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While contact between the cantilever beam and the hot surface is maintained, the 

active bimetal layer expansion creates internal stress in the cantilever beam, which causes 

the curling effect.  Figure 13 shows the tip displacement of the cantilever beam for the 

5 μm thick bimetal. 

 

Figure 13.  5 μm thick bimetal cantilever tip displacement 

Cantilever beams at larger thicknesses display a displacement behavior consistent 

with the 5 μm thick bimetal simulation.  At first, there is a large displacement peak in 

response to the temperature change at the contact area.  Then, as the beam cools, the 

cantilever beam’s resonant frequency influences the tip displacement through an 
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underdamped response until the displacement reaches zero again.  The displacement 

cycle repeats once the bimetal comes in contact with the hot surface after cooling. 

The produced voltage from the piezoelectric material correlates with the 

cantilever tip displacement shown in Figure 13.  The peaks and troughs in the voltage 

signal reflect the underdamped displacement response of the cantilever beam.  Each 

conducted simulation is individually tuned to maximize the peak voltage from the 

piezoelectric material.  Figure 14 shows the voltage recorded by Boundary Probe 1 in the 

5 μm bimetal thickness simulation. 

 

Figure 14.  5 μm thick bimetal cantilever voltage signal 
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The tuning process for each simulation involves finding the “roll-off” point of the 

produced voltage.  This process is governed by the length of the heating time, which 

represents the length of time that the cantilever beam is forced to remain in contact with 

the hot surface before release.  As seen in Figure 14, the voltage signal reaches its 

maximum just before the cantilever tip displacement reaches its maximum in Figure 13.  

This is the desired effect that identifies the “roll-off” point.  Boundary Probe 1 is set to 

record the voltage on the underside of the piezoelectric material.  The coordinate system 

selection for the piezoelectric material orientation in the simulation is set to the XZ-plane, 

which yields a negative voltage when the bottom face of the piezoelectric material is 

subject to tensile stress.  Figure 15 shows a surface plot of the electric potential through 

one vertical slice of the 5 μm bimetal thickness cantilever beam as it is stressed. 
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Figure 15.  Stressed piezoelectric material (deformation scale 500; bimetal layer not 

shown) 

The largest voltage magnitude resides at the location where the piezoelectric 

material experiences the most bending.  Figure 15 is showing the state of the 

piezoelectric material at 0.2 μs, which is where the maximum voltage magnitude occurs 

in Figure 14.  As can be noted from the color legend, the largest voltage magnitude is in 

the dark blue area at -0.12 V.  However, in Figure 14, -0.12 V is not the maximum 

voltage magnitude recorded in the voltage signal.  This is because the simulation treats 

the entire lower boundary of the piezoelectric material as a conductor and therefore 
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averages across the boundary to produce a net voltage.  The net voltage value is then 

dropped across the 1 kΩ resistor through the virtual circuit. 

The current density also correlates with the features described in the cantilever tip 

displacement plot in Figure 13.  It is expected that the beam tip displacement would 

strongly influence the voltage signal and the current density produced by the piezoelectric 

material because the output of the piezoelectric material depends on its mechanical input.  

Figure 16 shows the current density of the piezoelectric material in the 5 μm bimetal 

thickness simulation. 

 

Figure 16.  5 μm thick bimetal cantilever current density 
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Rapid changes in current density occur while the cantilever beam is making large 

changes in displacement.  Therefore, the two current density peaks in Figure 16 

correspond to the rising and falling edges of the large displacement peak in Figure 13.  

The current is obtained by multiplying the current density by the cross-sectional area of 

the piezoelectric material.  The cross-sectional area for all of the simulated designs is 

200 μm2. 

Post-simulation data analysis yields the cantilever’s generated power by 

multiplying the voltage data and the current data after scaling by the cross-sectional area.  

Figure 17 shows the instantaneous power generated by the 5 μm thick bimetal cantilever 

beam. 

 

Figure 17.  5 μm thick bimetal cantilever instantaneous power 
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The range of time shown on the x-axis represents one cycle of operation.  The first 

local maximum corresponds with the rising edge of the displacement peak in Figure 13; 

the absolute maximum corresponds with the falling edge of the displacement peak in 

Figure 13.  Over one full cycle, the average power for the 5 μm thick bimetal cantilever is 

1.95 nW.  Most of the appreciable power generated by the cantilever beam occurs during 

the beginning of its cycle; this is the behavior of the cantilever beam at larger bimetal 

thicknesses.  Therefore, it would be desirable to shorten the time length of a cycle to 

feature only the interval where appreciable power is generated by the cantilever beam.  

This issue is addressed through the down-scaling of the bimetal thickness.  The next 

sub-section of this chapter shows the behavior of the cantilever beam at smaller bimetal 

thicknesses to exhibit the differences and benefits of scaling the thickness. 
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Smaller Bimetal Thicknesses 

The results from the 1.5 μm bimetal thickness simulation are presented below to 

explain the behavior of the cantilever beam at smaller bimetal thicknesses.  The smaller 

bimetal thicknesses performed much differently than the larger bimetal thicknesses.  

Although both follow the same principles of heating and then curling up, the mechanical 

response to the heat input function differs.  This difference is evident in the cantilever tip 

displacement plot shown later in this sub-section.  Because the mechanical response is 

different, it is expected that the electrical response is also different.  This difference is 

evident in the voltage, current density, and instantaneous power plots shown later in this 

sub-section.  Figure 18 shows the tip displacement of the cantilever beam for the 1.5 μm 

thick bimetal. 
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Figure 18.  1.5 μm thick bimetal cantilever tip displacement 

Cantilever beams at smaller thicknesses display a displacement behavior 

consistent with the 1.5 μm thick bimetal simulation.  In Figure 18, there is not one large 

initial displacement peak as seen in Figure 13.  In Figure 18, the irregularity of the tip 

displacement indicates that multiple modal shapes influence the mechanical response of 

the cantilever beam to the heat input.  For the cantilever beams at larger bimetal 

thicknesses, higher order modal shapes are negligible because the larger thickness 

resulted in a stiffer beam.  For the cantilever beams at smaller bimetal thicknesses, higher 

order modal shapes are non-negligible because smaller bimetal thickness results in a less 

stiff beam.  Additionally, the displacement cycle for the smaller bimetal thicknesses is 
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shorter than the displacement cycle of the larger bimetal thicknesses.  A shorter 

displacement cycle ultimately results in a larger power output, which is discussed later in 

this sub-section. 

The local maxima in the cantilever tip displacement plot, shown in Figure 18, 

correspond with the generated voltage from the piezoelectric material.  Figure 19 shows 

the voltage recorded by Boundary Probe 1 in the 1.5 μm bimetal thickness simulation. 

 

Figure 19.  1.5 μm thick bimetal cantilever voltage signal 

The tuning process for the smaller bimetal thickness simulations is more difficult 

because there are multiple voltage magnitude peaks rather than one large definitive 

voltage magnitude peak.  The tuning process is modified in the case of smaller bimetal 
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thicknesses to determine the length of the heating time that produces the largest voltage 

magnitude and reduces the amount of time where the voltage rises above zero.  Figure 20 

shows a surface plot of the electric potential through one vertical slice of the 1.5 μm 

bimetal thickness cantilever beam as it is stressed. 

 

Figure 20.  Stressed piezoelectric material (deformation scale 100; bimetal layer not 

shown) 

Figure 20 is showing the state of the piezoelectric material at 0.24 μs, which is 

where the one of the local voltage magnitude maxima occurs.  As can be noted from the 

color legend, the largest voltage magnitude is in the dark blue area at -0.07 V.  In 

comparison to Figure 15, the location of the dark blue area has shifted in the negative 
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x-direction.  In the same manner as the larger bimetal thickness simulations, the net 

voltage value is dropped across a 1 kΩ resistor using a virtual circuit. 

The current density gives further evidence for the influence of higher order modal 

shapes due to its irregular nature.  Figure 21 shows the current density of the piezoelectric 

material in the 1.5 μm bimetal thickness simulation. 

 

Figure 21.  1.5 μm thick bimetal cantilever current density 

The rapid changes in current density occur while the cantilever beam is making 

large changes in displacement.  Many peaks and troughs demonstrate the complex 

movement of the cantilever beam as the internal stresses within the piezoelectric material 

change quickly. 
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For smaller bimetal thicknesses, the cantilever’s generated power is quite 

different from the generated power from the larger bimetal thicknesses.  Figure 22 shows 

the instantaneous power generated by the 1.5 μm thick bimetal cantilever beam. 

 

Figure 22.  1.5 μm thick bimetal cantilever instantaneous power 

The range of time shown on the x-axis represents one cycle of operation; in this 

case, one cycle of operation is much shorter than seen in Figure 17.  Over one full cycle, 

the average power for the 1.5 μm thick bimetal cantilever is 36.82 nW, which is over an 

order of magnitude greater than the average power from the 5 μm thick bimetal 

cantilever.  Most of the appreciable power generated by the 1.5 μm thick bimetal 

cantilever beam occurs during the end of its cycle; this is the behavior of the cantilever 
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beam at smaller bimetal thicknesses.  The length of one cycle has been shortened to an 

interval where a greater percentage on the cycle is spent generating appreciable power by 

the cantilever beam.  This issue has been addressed through the down-scaling of the 

bimetal thickness. 

Aggregate Results 

Overall, the increase in output power from down-scaling the bimetal thickness is 

valid only until the point when the significance of higher order modal shapes interferes 

with appreciable power generation.  For the design studied in this research, this occurs at 

around 1 μm thick for the bimetal.  The three figures in this sub-section display the 

results for all simulations conducted in this research. 

Figure 23 shows the peak voltage magnitude versus the bimetal thickness. 
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Figure 23.  Peak voltage versus bimetal thickness across all simulations 

The peak voltage decreases gradually as the bimetal thickness decreases.  The 

piezoelectric material thickness is also decreased as the bimetal thickness is decreased to 

account for the change in deflection.  Therefore, the relationship between the cantilever 

beam thickness and the peak voltage is expected to show a decrease in peak voltage as 

the thickness decreases.  The peak voltage magnitude is not significantly influenced by 

the higher order modal shape effects. 

 While the peak voltage magnitude shows a steadily decreasing relationship, the 

cantilever beam frequency across all simulations indicates that there is a preferred range 
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to achieve higher frequencies.  Figure 24 shows the cantilever beam frequency versus the 

bimetal thickness. 

 

Figure 24.  Cantilever beam frequency versus bimetal thickness across all simulations 

The cantilever beam frequency reaches a maximum of 3.2 MHz at a bimetal 

thickness of 2.5 μm, and then begins to drop off upon further reduction of the bimetal 

thickness.  The resonant frequency of each cantilever beam has an effect on how long the 

overall cantilever beam frequency is for one total displacement cycle.  It is because of 

these resonant frequencies that the duty cycle changes as the bimetal thickness is 

decreased, but only to a certain point.  The higher order modal shapes begin to interfere 
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with the operation of the cantilever beam and create diminishing returns for the cantilever 

beam frequency after reaching a bimetal thickness of 1.5 μm. 

The average power generated displays a similar behavior to the cantilever beam 

frequency.  Figure 25 shows the average electrical power versus the bimetal thickness. 

 

Figure 25.  Average power versus bimetal thickness across all simulations 

The average power recorded for each simulation in Figure 25 represents the 

average power generated for a single cantilever beam.  Outside of simulation, it is 

expected that a real-world implementation of these devices would be in a large matrix of 

cantilever beams so that the power generated for each individual device would be 

summed using additional circuitry.  The additional power management circuitry must be 
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designed to support non-synchronous devices in both series and parallel configurations.  

The initial response of the average power to the decreasing of the bimetal thickness is a 

significant increase in output power.  But after reaching a bimetal thickness of 1.5 μm, 

the average power decreases sharply.  Again, the higher order modal shapes prevent the 

continued increase of the average power as the bimetal thickness is decreased.  At a 

bimetal thickness of 1.5 μm, the cantilever beam generates a maximum average power of 

36.82 nW.  From the perspective of a top-view, the cantilever dimensions in this design 

are 20 μm × 10 μm per device.  A conservative estimate for device spacing in a matrix 

that allows for external circuitry would be 36 μm × 18 μm per device.  By taking the 

maximum average power and dividing it by the conservative estimate for device spacing, 

the result is the average power density.  This calculation yields an average power density 

of 5.68 mW/cm2.  This power density is two orders of magnitude higher than Seebeck 

devices recorded in the literature review, and it is comparable with the power densities 

that Puscasu reports in his research. 

Summary 

The campaign of experiments described in the test matrix from the chapter on 

methodology has been executed and yielded a sufficient data set from which to draw 

conclusions and recommend a superior dual-stage MEMS cantilever energy harvester that 

operates under the conditions of the human environment.  The next chapter discusses the 

findings that emerge from this body of research and suggests avenues for future work. 
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter states the findings that emerge from analyzing the results of this 

thesis research effort. Twelve different simulation experiments have been performed on a 

dual-stage MEMS cantilever energy harvester with the objectives of increasing the power 

density and improving the design.  The following discussion relates the results of the 

campaign of experiments back to the original problem statement formed in the 

Introduction chapter of this document. 

Design Configuration 

The design configuration chosen in this research stems from the influence of 

non-Seebeck thermal harvesting devices found in the literature and the influence of 

piezoelectric vibration harvesting devices found in the literature [5].  The impact-based 

design is changed for the purpose of achieving a non-impact-based design with a higher 

power density than the impact-based design [28]. 

 Thermal conduction occurs only when the bimetal is in contact with the hot side; 

the cold side of the device is entirely dependent on convection cooling from the ambient 

air.  In the original design from the literature, the zero stress reference deposition 

temperature must be at the median of the total temperature differential; in the design used 

in this research, the zero stress reference deposition temperature must be at the 

temperature of the cold side. 
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Control Variables 

The bimetal thickness scaling serves as the primary control variable in this 

research.  The concept behind device scaling is drawn from the literature, which 

analytically shows that bimetal performance in a non-Seebeck energy harvesting system 

increases when the size of the device is decreased [2].  Although this research presents a 

modified design of the non-Seebeck design found in the literature, a similar phenomenon 

is found when scaling the bimetal thickness to a certain point.  The conducted simulations 

demonstrate an increase in output power for the dual-stage MEMS cantilever energy 

harvester as the bimetal thickness is reduced until the thickness reaches about 1 μm.  The 

characteristics of the device operation are discussed in this section. 

At the two extremes of the spectrum of bimetal thicknesses tested, the electrical 

output decreases due to factors that negatively impact the device performance.  At a 

bimetal thickness of 10 μm, the dual-stage MEMS cantilever energy harvester 

experiences decreased performance due to slow heating times.  The bimetal layer 

thickness is such that the permeating heat from the contact area while the cantilever beam 

is latched takes extra time to affect the active layer of the bimetal.  The latching time for 

the 10 μm bimetal thickness is 0.15 μs, which is the longest required latching time for the 

simulations conducted in this research.  Slow heating time for the active layer decreases 

the frequency and therefore negatively impacts the device performance.  One problem 

that occurs for smaller bimetal thicknesses is the influence of higher order modal shapes 

on the displacement response.  Thinner cantilever beams are more susceptible to the 

effects of higher order modal shapes because the beam is more flexible.  Higher order 

modal shapes reduce the voltage generated by the piezoelectric material due to the 
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creation of inflection points that separate convex and concave regions of the cantilever 

beam.  Figure 26 shows an example of the piezoelectric material experiencing an 

inflection point in the 1 μm bimetal thickness simulation. 

 

Figure 26.  1 μm bimetal thickness simulation experiencing an inflection point (bimetal 

not shown) 

In Figure 26, the piezoelectric material experiences an inflection point at 0.23 μs 

into the simulation of the 1 μm bimetal thickness.  Inflection points create localized 

regions of negative voltage and localized regions of positive voltage on the terminal of 

the piezoelectric material.  These localized areas of negative and positive voltage cancel 

each other and reduce the net voltage output of the piezoelectric material.  A reduction in 

H
ei

gh
t (

μm
) 

Length (μm) 

V
oltage (V

) 



79 

the voltage output of the piezoelectric material diminishes the overall electrical power 

output of the dual-stage MEMS cantilever energy harvester.  Therefore, bimetals 

employed in the dual-stage MEMS cantilever energy harvester system suffer reductions 

in performance at thicknesses approaching 10 μm due to slow heating times and at 

thicknesses approaching 1 μm due to higher order modal shapes. 

Latching time and PZT-5H thickness are controllable nuisance variables, in that 

they both depend on the bimetal thickness.  In order to achieve the highest electrical 

output from the dual-stage MEMS cantilever energy harvester, the latching time must be 

individually tuned for each thickness to elicit the greatest electrical output.  The primary 

goal of the latching time tuning process is to heat the cantilever beam long enough to 

create the largest peak voltage after the beam is released from contact.  The secondary 

goal of the latching time tuning process is to create the shortest displacement cycle.  For 

each thickness, the resonant frequency of the cantilever beam changes; this means that 

the overlaid underdamped response displays a different frequency and amplitude 

dependent on the thickness.  The choice of latching time has a small effect on the 

displacement cycle of the dual-stage MEMS cantilever energy harvester.  This 

interdependence complicates the process of choosing a latching time because in certain 

cases, a small sacrifice in voltage by lengthening or shortening the latching time results in 

a large change in the displacement cycle.  Because the displacement cycle is directly 

linked to the operating frequency, the small change in latching time can ultimately result 

in an improved electrical power output.  This behavior is dependent on the overlaid 

underdamped displacement response, which changes with each bimetal thickness and 

becomes very irregular due to higher order modal shape influences as the bimetal 
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thickness approaches 1 μm.  The recommendation for finding the optimal latching time is 

to fabricate and test different latching voltages and characterize the electrical output 

power of the real system versus latching voltage. 

Significance of Research 

The end-goal of this line of research is to enable a wearable thermal energy 

harvesting device that functions as a mobile power supply able to power small 

electronics.  A device with this capability would benefit the warfighter who is deployed 

into a remote area without access to the power grid.  Instead of being forced to carry 

heavy batteries, the warfighter could carry a thermal energy harvesting device to power 

his or her electronics.  This thesis research effort contributes toward this goal by adapting 

designs found in the literature and exploring alternate configurations in the simulation 

environment to recommend a design that functions under the constraints of human body 

heat and ambient air.  This research applies the analytical findings from the literature and 

tests them in the simulation environment.  All experiments in this research effort were 

conducted in simulation with the underlying objective being that a superior design that 

fits the presented conditions would be recommended. 

Recommendations for Future Research 

The concerns for future research from the perspective of this thesis are split into 

two categories.  There exists future simulation research for the alternate configurations 

presented in this research.  There are many different future research options involving the 

fabrication and testing of prototype dual-stage MEMS cantilever energy harvester devices 

that fit the constraints of the human body’s environment. 
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For future simulation research, the temperature differential has a unique effect on 

the operation of the dual-stage MEMS cantilever energy harvester.  In this research 

effort, the temperature differential was held constant at 10 °C between 33 °C and 23 °C.  

Future research could address the external conditions of extreme hot/cold weather and 

suggest an optimal temperature range of operation for the device.  Additionally, the use 

of different materials and the alteration of other geometric parameters would prove 

valuable for further design optimization. 

For future fabrication and testing research, the recommendations presented in this 

body of research need to be fabricated and tested for feasibility.  A reliable fabrication 

process for creating a large matrix of dual-stage MEMS cantilever energy harvesters in a 

small area needs to be developed.  Power management circuitry that supports large 

matrices of non-synchronous device operation while accounting for possible parasitic 

capacitances is an important direction for future research.  Likewise, human subject 

testing for device performance must also take place to determine the power 

characteristics of the dual-stage MEMS cantilever energy harvester under the real-world 

conditions of the human body.  Using the conclusions gathered from simulation, the 

conclusions gathered from fabrication, the conclusions gathered from power management 

circuitry development, and the conclusions gathered from human subject testing, a final 

design can be reached and ultimately implemented. 

Additional challenges exist for using the power generated by the dual-stage 

MEMS cantilever energy harvester because voltage peaks less than 100 mV in magnitude 

are too low for traditional voltage rectification methods [1].  Fortunately, most of the time 

the voltage signals recorded in the simulations for this research stayed negative and did 
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not go above zero.  Boost converters or bootstrapping methods may be options for 

achieving higher voltages.  One of the power conditioning circuits suggested by Chao 

might be a good choice to efficiently convert the energy from the dual-stage MEMS 

cantilever energy harvester [30].  Additionally, a mechanical diode-less voltage multiplier 

is a viable option [31].  Power conditioning is an important part of the future research 

required in this area because the full realization of the total power available in a large 

matrix of dual-stage MEMS cantilever energy harvesters cannot be reaped if an efficient 

method for aggregating the individual power from each device is not implemented. 

Summary 

Small-scale thermal energy harvesting has been a steadily growing field of 

research for decades, and there are a nearly endless number of ways that these systems 

can be integrated into modern life.  Using a dual-stage MEMS cantilever energy harvester 

for the harvesting of human body heat is a unique niche that requires continued research 

for the purpose of creating a complete functional system in the future. 
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Appendix 

Included in this appendix are additional equations from the analytical derivation 

referenced in the Literature Review that were not used in the Derivation sub-section but 

provided further insight into the operation of the devices studied by Puscasu et al.  The 

authors compiled and derived a list of equations that serve as an analytical foundation for 

the operation of bimetal and piezoelectric based energy harvesters [2]. A sample of the 

relevant equations is given to provide the mathematical context for dual-stage 

non-Seebeck thermal energy harvesters. Bimetal heating and cooling constitutes the 

primary stage of thermal to mechanical energy conversion.  The bimetal internal average 

temperature, dependent on time, is expressed as: 

 

(32) 

 

where αT is the average thermal diffusivity of the bimetal materials, L is the length 

of the bimetal, Tcold is the temperature of the cold side, and Thot is the temperature of the 

hot side. Based on the temperature of the bimetal, induced thermal stress within the 

bimetal generates accumulated elastic energy. The bimetal elastic energy is expressed as: 

 

(33) 

 

where Y is the average Young’s Modulus of the materials, α2 is the larger 

coefficient of thermal expansion (CTE), α1 is the smaller CTE, ΔT is the temperature 

differential, and Vb is the volume of the bimetal. The elastic energy accumulation is 
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released when the bimetal snaps between its two stable states. The bimetal kinetic energy 

represents the release of its elastic energy and is expressed as: 

 

(34) 

 

where ρ is the density of the materials, Vb is the volume of the bimetal, and v is 

the maximum speed of the bimetal during the snap action. The kinetic energy of the 

bimetal causes a deflection of the piezoelectric material when the two components make 

contact. 
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